Discovering IoT Hub Database Route Tips & Tricks
Database Routes tips and tricks
Routes are integrations with the Scaleway ecosystem: they can forward MQTT messages to Scaleway services.
You can find the documentation here: IoT Hub Routes.
This page shows advanced usages of PostgreSQL and MySQL.
PostgreSQL Database advanced usage
This section shows two cases of data manipulation on the PostgreSQL side.
- The first one converts payloads to a float data type.
- The second one uses both JSON manipulation and stored plsql functions.
Before you start
To complete the actions presented below, you must have:
- A Scaleway account logged into the console
- Owner status or IAM permissions allowing you to perform actions in the intended Organization
- Followed the Getting started with the IoT Hub CLI tutorial
- A working PostgreSQL database, with valid credentials (username and password)
- Set up environment variables as shown in the code box below:
# Database settingsDBENGINE=postgresqlDBHOST=<your db host>DBPORT=<your db port>DBNAME=<your db name>DBUSER=<your db user>DBPASS=<your db password>
Non-binary payloads example
As we are not limited to binary payloads, in this example we will use PostgreSQL functions to manipulate $TOPIC
and $PAYLOAD
placeholders.
Let’s say we have a temperature sensor publishing on the temperature/living-room
topic. We also know that this sensor will only publish float values.
-
Create a database table to store the temperature measurements:
# Create the target database tablepsql -h $DBHOST --port $DBPORT -U $DBUSER -d $DBNAME -c 'CREATE TABLE temperatures (time timestamp,room text,value double precision)' -
Setup a database route to listen to the incoming messages, and persist them in the database:
# Create the IoT Hub Database Route# The query# 1. extract topic 2nd part (temperature/living-room -> living-room) stored in _room_ field,# 2. converts the binary payload into a float stored in _value_ fieldscw iot route create \hub-id=$(jq -r '.id' hub.json) \name=temperature \topic="temperature/+" \db-config.engine="$DBENGINE" \db-config.host="$DBHOST" \db-config.port=$DBPORT \db-config.dbname="$DBNAME" \db-config.username="$DBUSER" \db-config.password="$DBPASS" \db-config.query='INSERT INTO temperatures VALUES (NOW(), split_part($TOPIC, '"'/'"', 2), cast(encode($PAYLOAD, '"'escape'"') as double precision))'We may now test our setup. We’re going to publish a message and then check that it was stored in the database.
-
Publish a message:
sleep 5 # wait a little for the route to startmosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t 'temperature/bedroom' \-m '19.5' -
Check the result in the database:
psql -h $DBHOST --port $DBPORT -U $DBUSER -d $DBNAME -c "SELECT * FROM temperatures"
Advanced example with JSON and plsql functions
In the same manner, we can also manipulate JSON payload, call plsql functions, and take advantage of all the expressiveness that PostgreSQL offers.
The following example is logging building access attempts during non-working hours. Those are notified by badge readers, that publish a JSON payload on ‘access-control/office/’
-
Run the following commands in a terminal on your computer:
# Create the target database tablepsql -h $DBHOST --port $DBPORT -U $DBUSER -d $DBNAME -c 'CREATE TABLE access_logs (time timestamp PRIMARY KEY,login varchar(128));CREATE OR REPLACE FUNCTION nonworkinghours(at timestamp, login text) RETURNS voidAS $$DECLAREhour INTEGER;BEGINhour := EXTRACT(hour FROM at);IF hour <= 8 OR hour >= 22 THENINSERT INTO access_logs VALUES (at, login);END IF;END;$$ LANGUAGE plpgsql;'# Create the IoT Hub Database Route# NOTE: the query decodes the payload as json, then extract both 'timestamp' and 'user' values,# and finally executes `nonworkinghours` function with timestamp and user values as parametersscw iot route create \hub-id=$(jq -r '.id' hub.json) \name="non-working hours office access" \topic="access-control/office/#" \db-config.engine="$DBENGINE" \db-config.host="$DBHOST" \db-config.port=$DBPORT \db-config.dbname="$DBNAME" \db-config.username="$DBUSER" \db-config.password="$DBPASS" \db-config.query='SELECT nonworkinghours((encode($PAYLOAD, '"'escape'"')::json->>'"'timestamp'"')::timestamp, (encode($PAYLOAD, '"'escape'"')::json->>'"'user'"')::text)' -
Try publishing some access events.
sleep 5 # wait a little for the route to startmosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t access-control/office/reader1 \-m '{"timestamp": "2019-10-11T11:21:12","user": "jdoe","door": "front","access": "True"}'mosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t access-control/office/reader2 \-m '{"timestamp": "2019-10-11T04:10:44","user": "thief","door": "rear","access": "False"}'The first access occurs during working hours so it should not be recorded, however the second one occurs at nighttime and will be recorded.
-
Enter the following commands to check that everything is as expected:
psql -h $DBHOST --port $DBPORT -U $DBUSER -d $DBNAME -c "SELECT * FROM access_logs"Should output:
time | login---------------------+-------2019-10-11 04:10:44 | thief(1 row)
MySQL Database usage
This section presents similar examples using MySQL:
- The first one is a basic example of an IoT route with MySQL.
- The second one converts payloads to a float data type.
- The third one uses both JSON manipulation and MySQL stored functions.
Before you start
To complete the actions presented below, you must have:
- Followed the Getting started with the IoT Hub CLI tutorial
- A working MySQL database, with valid credentials (username and password). You can use a Scaleway Database instance, or any other MySQL instance publicly accessible
- Set up environment variables as shown in the code box below
# Database settingsDBENGINE=mysqlDBHOST=<your db host>DBPORT=<your db port>DBNAME=<your db name>DBUSER=<your db user>DBPASS=<your db password>
Basic MySQL example
This is a port of the Database Route section of the CLI tutorial to MySQL.
NOTE: The topic
database field must be a of text type, and payload
can be of text or blob type depending on your usage.
-
Run the following commands in a terminal on your computer:
# Create the target database tablemysql -h $DBHOST --port $DBPORT -p -u $DBUSER -D $DBNAME <<EOFCREATE TABLE messages (time timestamp,topic text,payload blob) CHARACTER SET utf8 COLLATE utf8_bin;EOF# Create the IoT Hub Database Route# The query will insert message topic and payload with current timestampscw iot route create \hub-id=$(jq -r '.id' hub.json) \topic="hello/world" \db-config.engine="$DBENGINE" \db-config.host="$DBHOST" \db-config.port=$DBPORT \db-config.dbname="$DBNAME" \db-config.username="$DBUSER" \db-config.password="$DBPASS" \db-config.query='INSERT INTO messages VALUES (NOW(), $TOPIC, $PAYLOAD)'The output will contain something like
ID 2251e2b1-c616-4a7e-9e72-b658da656424Name cli-route-db-tutorialHubID b20c3639-9030-496c-a1b2-6feb15846726Topic hello/worldType databaseCreatedAt nowDbConfig.Engine mysqlDbConfig.Host 127.0.0.1DbConfig.Port 5432DbConfig.Dbname route_testsDbConfig.Username jdoeDbConfig.Password <your_pass>DbConfig.Query INSERT INTO messages VALUES (NOW(), $TOPIC, $PAYLOAD)UpdatedAt now -
Publish a message and check whether it is inserted into the
message
table.sleep 5 # wait a little for the route to startmosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t hello/world \-m 'Hello, world!'mysql -h $DBHOST --port $DBPORT -p -u $DBUSER -D $DBNAME <<EOFSELECT * FROM messages;EOF
Non-binary payloads example
As we are not limited to binary payloads, in this example we will use MySQL functions to manipulate $TOPIC
and $PAYLOAD
placeholders.
Let’s say we have a temperature sensor publishing on the temperature/living-room
topic. We also know that this sensor will only publish float values.
-
Create a database table to store the temperature measurements:
# Create the target database tablemysql -h $DBHOST --port $DBPORT -p -u $DBUSER -D $DBNAME <<EOFCREATE TABLE temperatures (time timestamp,room text,value double precision);EOF -
Setup a database route to listen to the incoming messages, and persist them in the database:
# Create the IoT Hub Database Route# The query# 1. extract topic 2nd part (temperature/living-room -> living-room) stored in _room_ field,# 2. implicit converts the binary payload into a double stored in _value_ fieldscw iot route create \hub-id=$(jq -r '.id' hub.json) \topic="temperature/+" \db-config.engine="$DBENGINE" \db-config.host="$DBHOST" \db-config.port=$DBPORT \db-config.dbname="$DBNAME" \db-config.username="$DBUSER" \db-config.password="$DBPASS" \db-config.query='INSERT INTO temperatures VALUES (NOW(), SUBSTRING_INDEX($TOPIC, '"'/'"', -1), $PAYLOAD)'We may now test our setup. We’re going to publish a message and then check that it was stored in the database.
-
Publish a message:
sleep 5 # wait a little for the route to startmosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t 'temperature/bedroom' \-m '19.5' -
Check the result in the database:
mysql -h $DBHOST --port $DBPORT -p -u $DBUSER -D $DBNAME <<EOFSELECT * FROM temperatures;EOF
Advanced example with JSON and stored functions
In the same manner, we can also manipulate JSON payload, call stored functions, and take advantage of all the expressiveness that MySQL offers.
The following example is logging building access attempts during non-working hours. Those are notified by badge readers, that publish a JSON payload on ‘access-control/office/’
-
Run the following commands in a terminal on your computer:
# Create the target database tablemysql -h $DBHOST --port $DBPORT -p -u $DBUSER -D $DBNAME <<EOFCREATE TABLE access_logs (time timestamp PRIMARY KEY,login varchar(128));DELIMITER $$CREATE PROCEDURE nonworkinghours(at timestamp, login text)BEGINDECLARE hour INTEGER;SET hour = HOUR(at);IF hour <= 8 OR hour >= 22 THENINSERT INTO access_logs VALUES (at, login);END IF;END$$DELIMITER ;EOF# Create the IoT Hub Database Route# NOTE: the query decodes the payload as json, then extract both 'timestamp' and 'user' values,# and finally executes `nonworkinghours` procedure with timestamp and user values as parametersscw iot route create \hub-id=$(jq -r '.id' hub.json) \topic="access-control/office/#" \db-config.engine="$DBENGINE" \db-config.host="$DBHOST" \db-config.port=$DBPORT \db-config.dbname="$DBNAME" \db-config.username="$DBUSER" \db-config.password="$DBPASS" \db-config.query='CALL nonworkinghours(JSON_EXTRACT($PAYLOAD, '"'$.timestamp'"'), JSON_EXTRACT($PAYLOAD, '"'$.user'"'))' -
Try publishing some access events:
sleep 5 # wait a little for the route to startmosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t access-control/office/reader1 \-m '{"timestamp": "2021-10-11T11:21:12","user": "jdoe","door": "front","access": "True"}'mosquitto_pub \-h $(jq -r '.endpoint' hub.json) \-i $(jq -r '.device.id' dev2.json) \-t access-control/office/reader2 \-m '{"timestamp": "2021-10-11T04:10:44","user": "thief","door": "rear","access": "False"}'The first access occurs during working hours so it should not be recorded, however, the second one occurs at nighttime and will be recorded.
-
Enter the following commands to check that everything is as expected:
mysql -h $DBHOST --port $DBPORT -p -u $DBUSER -D $DBNAME <<EOFSELECT * FROM access_logs;EOFShould output:
time login2021-10-11 04:10:44 "thief"